GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

MARKS DISTRIBUTION FOR STD IX (2023-2024)

Sr. No	Mathematics Theory (A)	Marks
1	First Mid Test	20
2	First Terminal Examination	80
3	Second Mid Test	20
4	Second Terminal Examination	80
	TOTAL (A)	200
Sr. No	Year Round Assessment (YRA)(B)	Marks
1	Assignment on Financial Education	10
2	Math Lab activities – First Term	10
3	Math Lab activities – Second Term	10
4	Class response	05
5	Note books	05
	TOTAL (B)	40
	TOTAL (A + B)	240

DESIGN OF THE QUESTION PAPER (2023-2024)

FIRST MID TEST

SUBJECT: MATHEMATICS (E)

Time: 1 hr

Class: IX

Max. Marks: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	4	20%
2.	Understanding	7	35%
3.	Application	4	20%
4.	Skill	5	25%
	Total	20	100%

2. Weightage to the different areas of Content

Chapter No.	Торіс	Marks
1.	Number Systems	06
б.	Lines and Angles	06
11.	Construction	03
PDF	Trigonometry	05
	Total	20

N.B: The topic 'Introduction to Euclid's Geometry' only for reading purpose.

Concepts -Theorem, Axiom & Postulate to be explained

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type (VSA)	1	4	04
2.	Short Answer Type- I (SA-I)	2	5	10
3.	Short Answer Type- II (SA-II)	3	2	06
	Total		11	20

4. Weightage to Difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

5. Number of Questions: There will be 11 questions

PATTERN OF FIRST MID TEST QUESTION PAPER (2023-2024)

	Time:1 hr.	Class IX Subject: MATHEMATICS	Max.Mar	ks:20
Q. No	Торіс	Thrust areas	Type of Question	Weightage
1	Number Systems	Any Concept on Number Systems	VSA(MCQ)	1mk
2	Lines and Angles	Any Concept on Lines and Angles.	VSA(MCQ)	1mk
3	Number Systems	 Rational numbers lying between two rational numbers. / Decimal form of rational nos./ Evaluate using the laws of exponents on real nos. 	VSA	1mk
4	Trigonometry	 Trigonometric ratios of complementary angle (figure provided)/ Trigonometric ratios of standard angles (0°, 30°, 45°, 60°, 90°) 	VSA	1mk
5	# Number Systems	 a) Evaluate using the identities: (a ± b)² /(a + b)(a - b) /(a ± b)(c ± d) (where a,b,c & d are real nos.)/ b) Evaluate by Rationalising the denominator: 1/(a±√b), 1/(a±√b), 1/(a±c√b) c)Express the recurring decimals in the form p/q; q≠0 (Any two to be asked) 	SA-I	2 mks
6	Number Systems	 Representing an Irrational number on a number line: (Irrational Numbers: √2, √3, √5, √7.5, etc)/ Representing real numbers on the number line (2 examples) 	SA-I	2mks
7	Lines and Angles	 Proving Theorems: Theorem on Vertically Opposite Angles/ Sum of angles in a triangle is 180°. (Figure to be provided) 	SA-I	2mks
8	Trigonometry	Using Pythagoras Theorem, find the third side of a right angled triangle and hence obtain the value of any one trigonometric ratio of an acute angle.	SA-I	2mks

9	Trigonometry	 With the help of a figure, Prove Sin²A + Cos²A= 1/ Evaluate by substituting the known numerical values of Trigonometric ratios. 	SA-I	2 mks
10	Lines and Angles	 Numerical problem using the concepts of Parallel lines & a transversal Angle sum of a triangle Exterior angle property of a triangle Any other concept from this topic. 	SA-II	3mks
11	#Constructions	Construction of a triangle, given its: a) base, base angle and the sum of the other two sides. OR b) base, base angle and the difference of the other two sides.	SA-II	3 mks
		# internal choice to be provided		

DESIGN OF THE QUESTION PAPER (2023-2024)

SECOND MID TEST

SUBJECT: MATHEMATICS (E)

Time : 1 hr

Class : IX

Max. Marks:20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1.Weightage to the Learning objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	4	20%
2.	Understanding	9	45%
3.	Application	7	35%
4.	Skill	-	-
	Total	20	100%

2.Weightage to the different areas of Content

Chapter No.	Торіс	Marks
9	Areas of Parallelograms and Triangles	04
12	Heron's formula	07
15	Probability	04
PDF	Logarithms	05
	Total	20

N.B :

In the topic of Areas of Parallelograms and Triangles, the following are for evaluation:

Exercise 9.2: Problems 1, 2, 3, 6 and examples similar to them

Exercise 9.3: Problems 1, 2, 3,14 and examples similar to them

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type(VSA)	1	4	04
2.	Short Answer Type I(SA-I)	2	5	10
3.	Short Answer Type II (SA-II)	3	2	06
	Total		11	20

4. Weightage to Difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

5. Number of Questions: There will be 11 questions

PATTERN OF SECOND MID TEST QUESTION PAPER (2023-2024)

Time:1 hr.Class IXSubject: MATHEMATICSMax. Marks:20

Q. No	Торіс	Thrust areas	Type of Question	Weightage
1	Heron's formula	Any Concept from Heron's Formula	VSA(MCQ)	1mk
2	Logarithms	One question of the type from Exercise 1 to Exercise 5.	VSA(MCQ)	1mk
3	Heron's formula	 To find the semi-perimeter of any triangle / equilateral triangle / Isosceles triangle./ To find the side of an Equilateral triangle/ Isosceles triangle given its perimeter/ semi-perimeter./ To find the third side of a triangle given its semi-perimeter and two of its sides. 	VSA	1mk
4	Probability	Experimental / Theoretical probability	VSA	1mk
5	Areas of Parallelograms and Triangles	 Concept of: Triangles on the same base (or equal bases)& between the same parallels/Parallelograms on the same base (or equal bases) and between the same parallels/Triangle and a parallelogram on the same base(or equal bases) & between the same parallels/ To complete the proof (Theorem9.1)/ Numerical problems based on concept/theorems 9.2/9.3 	SA-I	2mks
6	#Areas of parallelograms and triangles	 Problems similar to: Ex.9.1 (Q.1, Q,2, Q.3, Q.6) and from Ex.9.3 (Q.1, Q.2, Q.3, Q.14) 	SA-I	2mks
7	Heron's formula	• To find the Area of a triangle when the length of 3 sides are known or 2 sides and perimeter given/	SA-I	2mks

		 To find the Area of a parallelogram given its adjacent sides and one diagonal/ To find the Area of rhombus given its side and one of the diagonals. 		
8	Logarithms	 Given the log /Antilog of a number to the base 10, find the log / Antilog of: Example: If log 1.374 = 0.1380 and Antilog 2.4305 = 269.5 then find: 	SA-I	2mks
		 i) Log 0.01374 ii) Antilog 3.1380 iii) Antilog (Ī.4305) iv) Log 26.95 		
9	Logarithms	With the help of logarithmic tables find the following: i) Log 54.368 ii) Antilog 2. 0741	SA-I	2mks
10	Probability	Experimental probability.	SA-II	3mks
11	#Heron's formula	Applications of Heron's formula to find the Area of a general quadrilateral / field, etc.	SA-II	3 mks
		# Internal choice to be provided		

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

DESIGN OF THE QUESTION PAPER (2023-2024)

FIRST TERMINAL EXAMINATION

SUBJECT: MATHEMATICS (E)

Time: 2¹/₂hrs Class: IX Max. Marks:80

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1.Weightage to the Learning objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	10	12.5%
2.	Understanding	43	53.75 %
3.	Application	15	18.75%
4.	Skill	12	15%
	Total	80	100%

2.Weightage to the different areas of Content

Chapter No.	Торіс	Marks
1.	Number Systems	07
2.	Polynomials	17
3.	Linear Equations in Two Variables	10
4.	Lines and Angles	08
5	Triangles	13
б.	Quadrilaterals	10
7.	Constructions	07
PDF	Trigonometry	08
	Total	80

N.B:

1)In the topic of "Quadrilaterals", the following are for evaluation:

Ex8.1: Q nos. 1,2,6,9,10 and examples similar to them

Ex 8.2 : Q nos. 1, 2, 3, 4 and examples similar to them

2) In the topic of "Coordinate Geometry", only the subunits 3.2 Cartesian System and3.3 Plotting a Point in the Plane if it's Coordinates are Given, to be taught before teaching ch. 4 "Linear Equations in Two Variables".

3)In the topic of "**Triangles**" the **sub unit: 'Inequalities in a Triangle'**, only the numerical applications of the theorems 7.6,7.7 and 7.8, will be tested.

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type(VSA)	1	20	20
2.	Short Answer Type I(SA-I)	2	12	24
3.	Short Answer Type II (SA-II)	3	8	24
4.	Long Answer Type (LA)	4	3	12
	Total		43	80

4. The expected time for different type of questions would be as follows:

Sr. No.	Form of Questions	Approx. time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) x (n)
1.	Very Short Answer Type(VSA)	1.5	20	30
2.	Short Answer Type I (SA-I)	4	12	48
3.	Short Answer Type II (SA-II)	6	08	48
4.	Long Answer Type (LA)	8	03	24
	Total		43	150

5.Weightage to Difficulty level of questions:

S.No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

6. Number of Questions:

There will be **43** questions

STD IX BLUE PRINT OF FIRST TERM EXAM MATH QUESTION PAPER(2023-2024)

S R	Objectives	Knowl	edge	•		Unders	standing			Aj	plicatio	n		SI	cill			TOTAL
R N O	Form of Questions	VSA	S A I	S A I I		VSA	SA I	SA II	LA	V S A	SA I	SA II	LA	V S A	SA I	SA II	LA	
	Content/Mks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	-
1	Number	1(1)				3(1)	21(2)								22(2)			5(7)
	Systems	2(1)																
2	Polynomials	4(1)				5(1)	23(2)				26(2)		41(4)					9(17)
						17(1) 25(2)	24(2)											
						27(2)												
3	Linear Equations in	6(1)				8(1)					28(2)					33(3)		7(10)
	Two Variables	7(1)				18(1) 19(1)												
4	Trigonometry	9(1)				20(1)	29(2)	34(3)										5(8)
		10(1)																
5	Lines And	11(1)				13(1)	30(2)					35(3)						5(8)
	Angle	12(1)																
6	Triangles					14(1)	31(2)	36(3)					42(4)					6(13)
						15(1)	32(2)											
7	Quadrilaterals	16(1)						37(3) 38(3) 39(3)										4(10)
8	Constructions		\uparrow													40(3)	43(4)	2(7)
	Total																	
		10(10)	I	<u> </u>	24(43))	1	1		5(15)	<u> </u>	1		4(12	!)	I	43(80)

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks.

This is a model Blue print. Objectives may be changed chapter wise, while setting the question paper.

PATTERN OF STD IX FIRST TERM EXAM QUESTION PAPER(2023-2024)

Time: $2\frac{1}{2}$ hrs.

Class IX

Subject: MATHEMATICS Max.Marks:80

Q. No	Торіс	Thrust Areas	Type of Question	Weightage
1	Number Systems	Any concept from Number Systems	VSA(MCQ)	1mk
2	Number Systems	Any concept from Number Systems	VSA(MCQ)	1mk
3	Number Systems	Any concept from Number Systems	VSA(MCQ)	1mk
4	Polynomials	Any concept from Polynomials.	VSA(MCQ)	1mk
5	Polynomials	Any concept from Polynomials.	VSA(MCQ)	1mk
6	Linear Equations in Two Variables	Any concept from Linear Equations in Two Variables	VSA(MCQ)	1mk
7	Linear Equations in Two Variables	Any concept from Linear Equations in Two Variables	VSA(MCQ)	1mk
8	Linear Equations in Two Variables	Any concept from Linear Equations in Two Variables	VSA(MCQ)	1mk
9	Trigonometry	Any concept from Trigonometry	VSA(MCQ)	1mk
10	Trigonometry	Any concept from Trigonometry	VSA(MCQ)	1mk
11	Lines and Angles	Any concept from Lines and Angles.	VSA(MCQ)	1mk
12	Lines and Angles	Any concept from Lines and Angles.	VSA(MCQ)	1mk
13	Lines and Angles	Any concept from Lines and Angles.	VSA(MCQ)	1mk
14	Triangles	Concept from inequalities of Triangles-numerical applications	VSA(MCQ)	1mk
15	Triangles	Concept from inequalities of Triangles-numerical applications	VSA(MCQ)	1mk
16	Quadrilaterals	Any concept from Quadrilaterals.	VSA(MCQ)	1mk

17	Polynomials	 To Find the zero of a linear polynomial/ To determine if a real number 'K' is a zero of the given polynomial. 	VSA	1mk
18	Linear Equations in Two Variables	 To express the given linear equation in the form of ax + by + c = 0. and state the values of a , b and c. / To check whether the given values of 'x' and 'y' are the solution of the given linear equation / Concepts of Cartesian system from Co-ordinate geometry/ To write the equation of a line parallel to the X-axis and at a distance of 'K' units above or below it/ To write the equation of line parallel to the Y-axis and at a distance of 'K ' units to the left or right of it / If the given values of 'x' and 'y' are the solution of a linear equation in two variables, then find the value of the unknown 'k' 	VSA	1mk
19	Linear Equations in Two Variables	Write the equations of any two lines passing through the point P(x, y) Ex 4.3 eg 2	VSA	1mk
20	Trigonometry	Example based on sin, cos and tan ratios of complementary angles.	VSA	1mk
21	#Number Systems	a) Express the recurring decimal in the form $\frac{p}{q}$; $q \neq 0$ OR b) Rationalise the denominator: • $\frac{1}{a \pm \sqrt{b}}$ / • $\frac{1}{\sqrt{a \pm \sqrt{b}}}$ / • $\frac{1}{a \pm c \sqrt{b}}$	SA-I	2 mks

22	Number Systems	Representing Irrational numbers on a number line:	SA-I	2 mks
		(Irrational Nos : $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7.5}$, etc)		
23	Polynomials	 To determine if g(x) is a factor of p(x) using the factor theorem/ To find the value of k if g(x) is a factor of p(x)/ To find the remainder when p(x) is divided by g(x) using the remainder theorem. 	SA-I	2 mks
24	#Polynomials	To Factorise a given quadratic polynomial ax ² +bx +c by splitting the middle term where a≠ 1 (Internal choice to be given)	SA-I	2 mks
25	Polynomials	To expand using suitable identities: • $(a +b)^3 = a^3 + 3a^2b + 3ab^2 + b^3/$ • $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3/$ • $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$	SA-I	2 mks
26	Polynomials	To evaluate using suitable identities: • (a +b) ³ = a ³ +3a ² b+3ab ² +b ³ / • (a-b) ³ = a ³ -3a ² b+3ab ² -b ³ / • (x + a) (x + b) =x ² + (a +b) x+ ab	SA-I	2 mks
27	Polynomials	To Factorise using suitable identities: • $x^3 + y^3 = (x + y) (x^2 - x y + y^2)/$ • $x^3 - y^3 = (x - y) (x^2 + x y + y^2)/$ • $a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = (a + b + c)^2/$ • $a^3 + 3a^2b + 3ab^2 + b^3 = (a + b)^3/$ • $a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3$	SA-I	2 mks
28	Linear Equations in Two Variables	Write Linear equations in two variables for the following two situations.	SA-I	2 mks
29	Trigonometry	To prove with the help of a figure, the basic trigonometric identity : $Sin^2\theta + Cos^2\theta = 1$	SA-I	2mks

30	Lines And	• To prove that the vertically	SA-I	2mks
	Angles	 To prove that the vertically opposite angles formed by two intersecting lines are equal. / To prove the angle sum property of a triangle. (Figure to be provided) 	0/11	211100
31	Triangles	To identify the congruence rule and state the pairs of congruent triangles (2egs)	SA-I	2mks
32	Triangles	To prove theorem on isosceles triangle.(Thm7.2/Thm7.3) (Figure to be provided)	SA-I	2mks
33	Linear Equations in Two Variables	To draw the graph of a linear equation in two variables.	SA-II	3mks
34	#Trigonometry	 a) Given the lengths of any two sides of a right-angled triangle to find the length of the third side and hence the values of the given trigonometric ratios. OR b) Evaluate trigonometric expression using known trigonometric values of specific angles. 	SA-II	3mks
35	Lines And Angles	Numerical Applications on •Angle Sum Property of Triangle/ •Exterior Angle Property of triangle/ •Pairs of angles/ •parallel lines and transversal	SA-II	3mks
36	Triangles	To prove triangles are congruent by Criteria for Congruence of Triangles (Easy type)	SA-II	3mks
37	Quadrilaterals	Theorems on properties of a parallelogram. Thms.(8.1&8.2)/8.7 (to write /complete the proof)	SA-II	3mks
38	Quadrilaterals	Ex8.1: Q nos. 1,2,6,9,10 and examples similar to them	SA-II	3mks

		Ex 8.2 : Q nos. 1, 2, 3, 4 and examples similar to them		
39	Quadrilaterals	Numerical Application of the midpoint Theorem.	SA-II	3mks
40	#Constructions	Construction of a triangle, given its: a) base, base angle and sum of the other two sides.	SA-II	3mks
		OR		
		b) base, base angle and thedifference of the other two sides.		
41	Polynomials	Factorising a given cubic polynomial Ex 2.4 - Q 5 type	LA	4mks
42	Triangles	To prove triangles are congruent by Criteria for Congruence of Triangles. (Difficult type)	LA	4mks
43	Construction	Construction of triangle given its perimeter and two base angles.	LA	4mks
		# internal choice to be provided		

.....

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION ALTO-BETIM GOA 403521 DESIGN OF THE QUESTION PAPER (2023 – 2024) SECOND TERMINAL EXAMINATION SUBJECT : MATHEMATICS (E)

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows :

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1	Knowledge	12	15%
2	2 Understanding		56.25%
3	Application	16	20%
4	Skill	07	8.75%
	Total	80	100%

2. Weightage to the different areas of Content:

Chapter	Торіс	Marks
No.		
10.	Circles	10
13.	Surface Areas and Volumes	12
14.	Statistics	13
9.	Areas of Parallelograms and Triangles	06
12.	Heron's Formula	10
15.	Probability	06
PDF	Logarithms	08
2	Polynomials	04
4	Linear Equations in Two Variables	04
7	Triangles	03
PDF	Trigonometry	04
	Total	80

N.B: Thrust areas of the following topics for the Second Term Exam

Ch2) Polynomials- Factorisation of a quadratic polynomial by splitting the middle term,

Factor theorem and Remainder theorem.

Ch 4) Linear Equation in two variables- Drawing the graph of a linear equation in two

variables and important concepts

Ch 7) Triangles- To prove two triangles are congruent by using the Criteria for Congruence

of triangles

Trigonometry- PDF

3. Weightage to different form / type of Questions :

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type (VSA)	1	20	20
2.	Short Answer Type I (SA-I)	2	11	22
3.	Short Answer Type II (SA-II)	3	10	30
4.	Long Answer Type (LA)	4	2	08
	Total		43	80

4. The expected time for different type of questions would be as follows :

Sr. No	Form of questions	Approx. time for each question in mins. (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) x (n)
1.	Very short answer Type (VSA)	2	20	40
2.	Short answer Type I (SA-I)	3	11	33
3.	Short answer Type II (SA-II)	6	10	60
4.	Long answer Type (LA)	8.5	02	17
	Total		43	150

5. Weightage to difficulty level of questions :

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

6. Number of Questions:

There will be 43 questions

STD I	X
-------	---

Sr	Objectives	Kn	owled	ge		Und	erstan	ding		A	pplica	tion			Ski	II		
No	Forms of Questions	VSA	SA-I	SA-II	LA	VSA	SA-I	SA-II	LA	VSA	SA-I	SA-II	LA	VSA	SA-I	SA-II	LA	
	Content/marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
1	Circles	1(1)	21(2)			2(1)		32(3)				33(3)						5(10)
	Surface areas and					4(1)												
2	Volumes	3(1)	22(2)			5(1)	23(2)	>			24(2)	34(3)						7(12)
3	Statistics	17(1)					25(2)	35(3) 36(3)									42(4)	5(13)
	Areas of parallelograms																	
4	and triangles					6(1)	26(2)	37(3)										3(6)
5	Heron's formula	7(1)					27(2)	38(3)					43(4)					4(10)
6	Probability					8(1) 9(1)				18(1)		39(3)						4(6)
						10(1) 11(1) 19(1)												
7	Logarithms		29(2)			20(1)	28(2)											6(8)
8	Polynomials					12(1) 13(1)	30(2)											3(4)
9	Linear equations in two variables					14(1)										40(3)		2(4)
	Triangles					()		41(3)								- (- /		1(3)
	Trigonometry	15(1) 16(1)					31(2)	(-7										3(4)
	01	6(6)	3(6)			13(13)	. ,	6(18)		1(1)	1(2)	3(9)	1(4)			1(3)	1(4)	
	Total		9(12)	ı			26(45)			,	6(16)		/			2(7)	/	43(80)

NOTE : Figures outside the bracket indicate the question number and figures within the bracket indicate marks.

This is a model blue print.

Objectives may be changed chapter wise , while setting the Question paper.

PATTERN OF SECOND TERM EXAM QUESTION PAPER (2023-2024) STD IX Time: $2\frac{1}{2}$ HrsSubject : MATHEMATICS (E)Max. Marks: 80

Q	Торіс	Thrust areas	Type of	Weightage
No			Question	
1	Circles	Any concept from Circles	VSA (MCQ)	1 mk
2	Circles	Any concept from Circles	VSA (MCQ)	1 mk
3	Surface Areas and Volumes	Any question from Surface Areas and Volumes	VSA (MCQ)	1 mk
4	Surface Areas and Volumes	Any question from Surface Areas and Volumes	VSA (MCQ)	1 mk
5	Surface Areas and Volumes	Any question from Surface Areas and Volumes	VSA (MCQ)	1 mk
6	Areas of Parallelograms and Triangles	Any concept from Areas of Parallelograms and Triangles	VSA (MCQ)	1mk
7	Heron's Formula	Any concept from Heron's Formula	VSA (MCQ)	1 mk
8	Probability	Experimental / Theoretical probability	VSA (MCQ)	1 mk
9	Probability	Experimental / Theoretical probability	VSA (MCQ)	1 mk
10	Logarithms	Any concept from Logarithms (Ex. 1 to Ex. 5)	VSA (MCQ)	1 mk
11	Logarithms	Any concept from Logarithms (Ex. 1 to Ex. 5)	VSA (MCQ)	1 mk
12	Polynomials	Remainder Theorem	VSA (MCQ)	1 mk
13	Polynomials	Factor Theorem	VSA (MCQ)	1 mk
14	Linear Equations in two variables	Any concept from Linear equations in two variables	VSA (MCQ)	1 mk
15	Trigonometry	Trigonometric ratios of complementary angles	VSA (MCQ)	1 mk
16	Trigonometry	Trigonometric ratios of specific angles (0°, 30°, 45°, 60°, 90°)	VSA (MCQ)	1 mk
17	Statistics	 Find lower limit / upper limit / class mark / class size of the specified class interval./ Find the mean of the given ungrouped data/ Find the median / mode of the given ungrouped data/ 	VSA	1 mk

18	Probability	Experimental / Theoretical probability	VSA	1 mk
19	Logarithms	• Express the given number in exponential	VSA	1 mk
	2080111110	form into logarithmic form /		2
		• Express the given number in logarithmic form		
		into exponential form.		
20	Logarithms	Find the value of the logarithm of a number	VSA	1 mk
20	Logantinis	to any base by using the definition of	V DI L	1 mix
		logarithm.		
21	Circles	• To write the proof of theorem 10.1 /	SA-I	2mks
21	Circles	 the proof of theorem 10.2 	5711	211103
22	Surface Areas	Simple problems to find- Lateral Surface	SA-I	2 mks
~~	and Volumes	Area/Curved Surface Area/Total Surface Area/	5111	2 1113
		Volume of - Cube/Cuboid/Cylinder/Cone/Sphere/		
		Hemisphere		
23	Surface Areas	Problems in which Lateral Surface Area/Curved	SA-I	2 mks
	and Volumes	Surface Area/Total Surface Area /Volume of a -		
		Cube/Cuboid/Cylinder/Cone/Sphere/Hemisphere		
		are given and to find the unknown quantities.		
24	Surface Areas	Application problems on Surface area of-	SA-I	2 mks
	and Volumes	Cube/Cuboid/Cylinder/Cone/Sphere/Hemisphere		_
25	Statistics	• Given Mean / Median, find the unknown	SA-I	2 mks
		observation/		
		 Histogram: To complete the table of class 		
		intervals with varying width - to find the length of		
		rectangles		
		Eg Table 14.8 (with 4 class intervals)		
26	Areas of	• To complete the proof (Theorem 9.1)/	SA-I	2 mks
	Parallelograms	• Problem similar to Ex. 9.2 (Q1, Q2, Q3, Q6)		
	and Triangles			
27	Heron's	• To find the area of a triangle when two sides	SA-I	2 mks
	Formula	and perimeter is given/		
		• To find the area of the triangle when ratio of the		
		3 sides and perimeter is given/		
		• To find area of isosceles triangle/equilateral		
		triangle given perimeter/length of sides.		
28	Logarithms	Given the log /antilog of a number to the base 10,	SA-I	2 mks
		find the log / antilog of:		
		Example:		
		If log 1.374 = 0.1380 and		
		Antilog 2.4305 = 269.5 then find:		
		i) log 0.01374 iii) antilog $\overline{1}$.4305		
		ii) antilog 3.1380 iv) log 26.95		
29	Logarithms	Using logarithmic tables find the log and antilog	SA-I	2 mks
	_	of the following.		
		Example :		
		Find i) log 637.68 ii) antilog 2. 0657		
30	#Polynomials	To factorise a given quadratic polynomial	SA-I	2 mks
	,	ax ² +bx+c by splitting the middle term where		
		a≠1		
		(Internal choice to be given)		

31	#Trigonometry	a)Given the lengths of any two sides of a right- angled triangle to find the length of the third side and hence the value of the given	SA-I	2 mks
		trigonometric ratio.		
		OR		
		b)Evaluate trigonometric expression using known trigonometric values of specific angles.		
32	Circles	Numerical problems based on Thms.: 10.3 , 10.4 , 10.6 , 10.7	SA-II	3 mks
33	#Circles	Numerical problems based on Thms.:10.8, 10.9, 10.10, 10.11, 10.12. (Internal choice to be given)	SA-II	3 mks
34	Surface Areas	Application problems on Volume of - Cube /	SA -II	3 mks
	and Volumes	Cuboid/Cylinder/Cone/Sphere/Hemisphere		
35	Statistics	To construct a grouped frequency distribution	SA-II	3 mks
		table with		
		 Continuous class intervals / 		
		 Non Continuous(discrete) Class intervals 		
36	Statistics	To find the mean from an ungrouped frequency distribution table.	SA-II	3 mks
37	Areas of Parallelograms and Triangles	Numerical problems based on concepts of Th. 9.2 / Th. 9.3 / Examples 2, 3, 4 / Ex.9.3 (Q.1, Q.2, Q.3, Q.14)	SA-II	3 mks
38	Heron's	To find the area of any triangular	SA-II	3 mks
	Formula	region/quadrilateral		
39	Probability	To find the experimental probability of events.	SA-II	3 mks
40	Linear equation in two variables	To draw the graph of a linear equation in two variables.	SA-II	3 mks
41	#Triangles	To prove two triangles are congruent by criteria for congruence of triangles. (Internal choice to be given)	SA-II	3 mks
42	Statistics	 Draw a histogram and hence a frequency polygon for the given frequency distribution./ To draw a frequency polygon 	LA	4 mks
43	Heron's Formula	Applications of Heron's formula to find area of a general quadrilateral / field and cost factor etc.	LA	4 mks
	L	# Internal choice to be provided		