GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO -BETIM GOA 403521

FIRST INTERNAL TEST (2023-2024)

Subject: MATHEMATICS(E)- LEVEL 1 (REGULAR MATHEMATICS)

Time: 1HourCLASS: XMax. Marks: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	3	15%
2.	Understanding	9	45%
3.	Application	5	25%
4	Skill	3	15%
	TOTAL	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
2	Polynomials	5
3	Pair of Linear Equations in Two Variables	9
6	Triangles	6
	Total	20

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	1	4	4
2	Short Answer Type (SA-I)	2	2	4
3	Short Answer Type (SA-II)	3	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF SSC FIRST INTERNAL TEST QUESTION PAPER (2023-2024) Subject: MATHEMATICS (E) LEVEL - 1 (Regular Mathematics)

Time: 1hr

Class X

Max. Marks: 20

Q. No.	Торіс	Thrust areas	Type of Question	Weightage
1	Polynomials	Any Concept from Polynomials	VSA(MCQ)	1 mk
2	Triangles	Any Concept from Triangles	VSA(MCQ)	1 mk
3	Polynomials	 Given a graph of a (linear/quadratic) polynomial to identify the zero(s)/ To write a quadratic polynomial given sum and product of two zeroes/ To write a quadratic polynomial given two zeroes/ To find sum / product of zeroes of a quadratic polynomial 	VSA	1 mk
4	Pair of Linear Equations in Two Variables	 Find the value of k for which the given pair of linear equations will have a unique solution or no solution or infinitely many solutions / Find whether the given pair of linear equations are consistent or inconsistent/ If ax +by=m and bx +ay=n then find the value of x+ y or x-y 	VSA	1 mk
5	Pair of Linear Equations in Two Variables	Write a pair of Linear equations in two variables for the given word problem.	SA I	2 mks
6	Triangles	Numerical Application on any one of the 4 theorems on Triangles	SA I	2 mks
7	Polynomials	 Divide p(x) by g(x) and find q(x) and r(x) and write in the form p(x) = g(x) × q(x) + r(x)/ To find g(x) when p(x) ,q(x) and r(x) are given/ Given two zeroes find remaining two zeroes 	SA II	3 mks
8	# Pair of Linear Equations in Two Variables	 a) Find the solution of the pair of linear equations by Elimination method OR b) Find the solution of the pair of linear equations by Substitution / Cross multiplication method 	SA II	3 mks
9	Triangles	 To prove a rider on Triangles/ Proof of any one theorem. (B.P.T./ Pythagoras Theorem/ converse of Pythagoras theorem) 	SA II	3 mks
10	Pair of Linear Equations in Two Variables	Find solution of a pair of linear equations in two variables by graphical method. # Internal choice to be provided	SA II	3 mks

FIRST INTERNAL TEST (2023-2024) Subject: MATHEMATICS(E)- LEVEL 2 (Basic Mathematics)

: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	3	15%
2.	Understanding	11	55%
3.	Application	3	15%
4	Skill	3	15%
	TOTAL	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
2	Polynomials	5
3	Pair of Linear Equations in Two variables	9
6	Triangles	6
	Total	20

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	1	4	4
2	Short Answer Type (SA-I)	2	2	4
3	Short Answer Type (SA-II)	3	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF FIRST INTERNAL TEST QUESTION PAPER (2023-2024)

Subject: MATHEMATICS (E) LEVEL - 2 (Basic Mathematics)

Time: 1hr

Class X

Max. Marks: 20

Q.	Торіс	Thrust areas	Type of	Weightage
1	Polynomials	Any concept from Polynomials		1 mk
2	Triangles	Any concept from Triangles		1 mk
2	Polynomials	Given a graph of a (linear/guadratic)		1 mk
	i orynolinais	nolynomial to identify the zero(s)/	0.077	1
		To write a quadratic polynomial given sum		
		and product of two zeroes/		
		• To write a guadratic polynomial given two		
		zeroes/		
		• To find sum / product of zeroes of a		
		quadratic polynomial		
4	Pair of Linear	 Find the value of k, if x=a and y=b is a 	VSA	1 mk
	Equations in	solution of the given Linear equation in		
	Two Variables	two variables		
		 If ax +by=m and bx +ay=n then find the 		
		value of x+ y or x-y		
5	Pair of Linear	Attempt the following:	SA I	2 mks
	Equations in	i)Find the value of k for which the pair of		
	Two Variables	Linear equations in two variables will have		
		a unique solution or no solution or infinitely		
		many solutions.		
		ii)Find whether the pair of Linear equations		
		in two variables are consistent or		
	+ ···	inconsistent	<u> </u>	
6	Iriangles	Numerical Application on any one of the 4 theorems on Triangles	SAT	2 mks
7	Polynomials	Divide a cubic polynomial $p(x)$	SA II	3 mks
	i orynomiaio	by a linear polynomial $g(x)$ and write the	0, 11	•
		result in the form		
		$p(x) = q(x) \times g(x) + r(x)$		
8	# Pair of Linear	a) Find the solution of the pair of linear	SA II	3 mks
	Equations in	equations by Elimination method		
	Two Variables	OR		
		b) Find the solution of the pair of linear		
		equations by Substitution method		
9	Triangles	Proof of any one theorem.	SA II	3 mks
		• B.P.T. /		
		 Pythagoras Theorem/ 		
		 converse of Pythagoras theorem 		
10	Pair of Linear	Finding solution of a pair of linear equations	SA II	3 mks
	Equations in	in two variables by graphical method.		
	Two Variables			
		# Internal choice to be		
		provided		

SECOND INTERNAL TEST (2023-2024)

Subject: MATHEMATICS(E)- LEVEL 1 (REGULAR MATHEMATICS)

Time: 1HourCLASS: XMax. Marks: 20

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	3	15%
2.	Understanding	8	40%
3.	Application	6	30%
4	Skill	3	15%
	TOTAL	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
4	Quadratic Equations	7
8	Introduction to Trigonometry	4
9	Some Applications of Trigonometry	3
10	Circles	3
11	Constructions	3
	Total	20

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	01	4	4
2	Short Answer Type (SA-I)	02	2	4
3	Short Answer Type (SA-II)	03	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
З	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF SECOND INTERNAL TEST QUESTION PAPER (2023-2024)

Subject: MATHEMATICS (E) LEVEL - 1 (Regular Mathematics)

Time:	1hr

Class X

Max Marks: 20

Q.	Торіс	Thrust areas	Type of	Weightage
1	Introduction to	Any concert from Introduction to Trigonometry		1
1		Any concept from introduction to frigonometry	VSA(IVICQ)	тшк
2				41
2	Quadratic Equations	Any concept from Quadratic Equations	VSA(MCQ)	1 mk
3	Introduction to	Trigonometric ratios of Complementary angles	VSA	1mk
	Trigonometry			
4	Circles	Numerical Application	VSA	1mk
5	Circles	 Proof of Theorem 10.2/ 	SA-I	2mks
		Numerical Applications		
6	#Introduction to	a) Given a trigonometric ratio to find the value	SA-I	2 mks
	Trigonometry	of other trigonometric ratio using k method		
		OR		
		b) Evaluate trigonometric expression using		
		known trigonometric values of specific angles		
7	#Quadratic	a) Find roots of the guadratic equation by	SA-II	3mks
	Equations	factorisation method	-	
		OR		
		b) Find roots of the quadratic equation by		
		quadratic formula / completing square		
		method		
8	Applications of	Word Problem with figure showing	50-11	3mks
0	Trigonometry	• two angles of elevation /	5/(11	Shing
	mgonometry	• two angles of depression /		
		• two aligies of depression /		
		• one angle of elevation and one angle of		
		depression.		
9	Constructions	• Construct Similar triangles as per given scale	SA-II	3mks
		factor/		
		• To construct tangents to a circle from an		
		external point(Ex 11.2)		
10	Quadratic Equations	Word problem	SA-II	3mks
		# Internal choice to be provided		

SECOND INTERNAL TEST (2023-2024)

Subject: MATHEMATICS(E)- LEVEL 2 (BASIC MATHEMATICS)

Time: 1HourCLASS: XMax	. Marks: 20
------------------------	-------------

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	3	15%
2.	Understanding	10	50%
3.	Application	4	20%
4	Skill	3	15%
	TOTAL	20	100%

2. Weightage to the different areas of Content

Ch.no.	Name of the chapter	Marks
4	Quadratic Equations	7
8	Introduction to Trigonometry	4
9	Some Applications of Trigonometry	3
10	Circles	3
11	Constructions	3
	Total	20

Sr. No.	Type of Questions	Marks for each question	Number of questions	Total Marks
1	Very Short Answer Type (VSA)	01	4	4
2	Short Answer Type (SA-I)	02	2	4
3	Short Answer Type (SA-II)	03	4	12
		Total	10	20

4. Weightage to Difficulty Level of Questions

Sr. No.	Estimated difficulty level of questions	Percentage
1	Easy	20%
2	Average	60%
3	Difficult	20%
	Total	100%

5. Number of Questions: There will be 10 questions

PATTERN OF SECOND INTERNAL TEST QUESTION PAPER(2023-2024) Subject: MATHEMATICS (E) LEVEL - 2(Basic Mathematics)

Time: 1hr

Class X

Max. Marks: 20

Q. No.	Торіс	Thrust areas	Type of Question	Weightage
1	Introduction to Trigonometry	Concept from Introduction to Trigonometry	VSA(MCQ)	1mk
2	Quadratic Equations	Concept from Quadratic Equations	VSA(MCQ)	1 mk
3	Introduction to Trigonometry	Trigonometric ratios of Complementary angles	VSA	1mk
4	Circles	Numerical Application	VSA	1mk
5	Circles	 Proof of Theorem 10.2/ Numerical Applications	SA-I	2mks
6	# Introduction to Trigonometry	a)Given a trigonometric ratio to find the value of other trigonometric ratio using k method OR b)Evaluate trigonometric expression using known trigonometric values of specific angles	SA-I	2 mks
7	Quadratic Equations	Find roots of the quadratic equation by Factorisation method	SA-II	3mks
8	Applications of Trigonometry	Problem with figure showingan angle of elevation/an angle of depression.	SA-II	3mks
9	Constructions	 Construct Similar triangles as per given scale factor/ To construct tangents to a circle from an external point 	SA-II	3mks
10	Quadratic Equations	Find roots of a quadratic equation by using quadratic formula	SA II	3mks
		# Internal choice to be provided		

Third Internal Test (20marks)

(LEVEL 1-Regular Mathematics) and (LEVEL 2-Basic Mathematics)

INNOVATIVE TEST on any two /three chapters given below or

Presentation/Project/Assignment based on anyone of the following chapters

Ch.no.	Name of the chapter	
6	Triangles	
7	Co-ordinate Geometry	
9	Some Applications of Trigonometry	
13	Surface areas and Volumes	
14	Statistics	

PORTION FOR STD X - **MATHEMATICS (LEVEL2)(Basic Mathematics)**

Name of the Chapter	Portion						
1)Real Numbers	whole topic is included for evaluation						
2)Polynomials	a) Concept of a Polynomial, degree						
	& types						
	b) Zero of a Linear Polynomial						
	,Quadratic Polynomial- geometric						
	meaning of the zeroes of a Polynomial,						
	relationship between zeros and						
	coefficients						
	c)Finding a Quadratic Polynomial given sum and product of zeroes /zeroes						
	sum and product of zeroes /zeroes						
	d)To find the Quotient and remainder						
	when a Cubic Polynomial is divided by						
	a Linear polynomial and to express in						
	the form: Dividend = divisor x Quotient						
	Dividend =divisor x Quotient						
2)Pair of Linear equations in Two	a) Conoral form of a pair of linear						
variables	a) General form of a pair of linear						
	b) Conditions for a pair of Linear						
	equations in two variables to have-a						
	unique solution. no solution. infinitely						
	many solutions -finding the value of						
	the unknown						
	c)Find the solution of a pair of linear						
	equations in two variables by						
	(I) Elimination method						
	(II)Substitution method (one equation						
	should have coefficient of x and y as						
	one) (III)Graphical method (one						
	equation should have coefficient of x						
	and y as one and the other equation						
	should have coefficient of any one x or						
	y as one)						

4)Quadratic Equations	a) Concept of a Quadratic equation-					
	standard form					
	b) Finding the Roots of a Quadrati					
	equation by					
	(I)Factorisation method					
	(II)Quadratic formula					
	C)Nature of Roots based on					
	discriminant					
5)Arithmetic Progressions	a) Concept of an AP-first term,					
	common difference					
	b) Questions based on nth term, sum					
	of n terms of an AP					
	.a) Concept of Similarity of Triangles-					
6)Triangles	Tests for similarity of Triangles					
	b) Concept of theorem on Areas of					
	Similar Triangles (Proof not for					
	evaluation)					
	c)B.P.T., Pythagoras theorem and					
	Converse of Pythagoras theorem					
	(Proofs for evaluation)					
	d)Numerical applications of the above					
	4 theorems					
7)Coordinate Geometry	Concepts /Applications of					
	(I) Distance Formula					
	(II)Section Formula					
	(III)Area of Triangle Formula					
8)Introduction to Trigonometry	a) Concept of Trigonometry					
	b) Trigonometric ratios and their					
	relationships, k method					
	c) Proving with the figure					
	I) $\sin^2\theta + \cos^2\theta = 1$					
	II) $1+Tan^2\theta = Sec^2\theta$					
	III) $1+Cot^2\theta = Cosec^2\theta$					
	d)Expressions involving Trigonometric					
	ratios of some specific angles:					
	0°, 30°,45°,60°,90°					
	e) Trigonometric ratios of					
	complementary angles					

9)Some Applications of Trigonometry	a) Heights and Distances: Angle of					
	Elevation and Angle of Depression					
	b) Problems on heights and					
	Distances. Problems should have only					
	one right triangle with either angle of					
	elevation or depression.					
10)Circles	a) Concept of Tangent,					
	Thm.10.1(proof not for Evaluation)					
	Thm.10.2(with Proof)					
	b)Numerical applications					
11)Constructions	a) Construction of Tangents to a					
	Circle from a point outside the circle					
	b) Construction of Similar Triangles					
	as per given scale factor.					
	Note : Angles can also be drawn using					
	a protractor					
12)Areas Related to Circles	a) Perimeter and Area of a Circle					
	b) Areas of Segment, Sector,					
	Quadrant of a Circle and Semicircle					
	c) Applications to find areas of shaded					
	region involving two plane figures					
13)Surface Areas and Volumes	Whole topic is included for evaluation					
14)Statistics	a) Concept of Mean, Median, Mode					
	b) To find Mean of grouped data by					
	Direct method					
	c)To find Mode of grouped data.					
15)Probability	a) Concept of Theoretical Probability					
	b) Probability of a Sure event and an					
	Impossible event, 0≤P(E)≤1, P (not E)					
	c) Problems based on coins,					
	Dice (only 1), playing cards, numbered					
	cards, items in a box.					

PORTION FOR STD X - MATHEMATICS (LEVEL 1)(Regular Mathematics)

a) Everything is included from ch. 1 to ch.15.

b) In the topic of Triangles, **Rider and numerical applications** based on the theorems will be tested.

c)In the topic of Constructions , a pair of compasses and ruler to be used to draw specific angles

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

DESIGN OF SSC FINAL EXAM QUESTION PAPER (2023-2024)

Subject : MATHEMATICS (E) - LEVEL 1 (Regular Mathematics)

Time: 2½ hrsClass: XMax. Marks :80

The weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1.	Knowledge	10	12.5%
2.	Understanding	39	48.75%
3.	Application	21	26.25%
4.	Skill	10	12.5%
	Total	80	100%

2.Weightage to the different areas of Content

Chapter	Торіс	Marks
No.		
1.	Real Numbers	05
2.	Polynomials	05
3.	Pair of Linear Equations in Two Variables	10
4.	Quadratic Equations	07
5	Arithmetic Progressions	04
6.	Triangles	06
7.	Coordinate Geometry	04
8.	Introduction to Trigonometry	07
9.	Some Applications of Trigonometry	03
10.	Circles	04
11.	Constructions	06
12.	Areas Related to Circles	05
13.	Surface Areas and Volumes	05
14.	Statistics	07
15.	Probability	02
	Total	80

3. Weightage to different form/type of Questions

Sr. No.	Form of Questions	Marks for each question	Number of questions	Total Marks
1.	Very Short Answer Type (VSA)	1	20	20
2.	Short Answer Type I (SA-I)	2	9	18
3.	Short Answer Type II (SA-II)	3	10	30
4.	Long Answer Type (LA)	4	3	12
	Total		42	80

4. The expected time for different type of questions would be as follows:

Sr.No.	Form of Questions	Approx. time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) x (n)
1.	Very Short Answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	9	27
3.	Short Answer Type II (SA-II)	5.9	10	59
4.	Long Answer Type (LA)	8	3	24
	Total		42	150

5. Weightage to Difficulty level of questions:

Sr. No.	Estimated difficulty level of questions	Percentage
1.	Easy	20%
2.	Average	60%
3.	Difficult	20%
	Total	100%

.....

6. Number of Questions:

.....

There will be **42** questions

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FINAL EXAM QUESTION PAPER (2023-2024)

Subject : MATHEMATICS (E) - LEVEL 1 (Regular Mathematics)

Time : $2\frac{1}{2}$ hrs

Class : X

Max. Marks :80

ė	Objectives	ves Knowledge				Understanding				Application				Skill				
I.N.	Forms of Questions	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	
02	Content / Marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
1	Real Numbers	1(1)					21(2)				22(2)							3(5)
2	Polynomials					2(1), 3(1)		30(3)										3(5)
3	Pair of Linear Equations in Two Variables	4(1)				5(1), 17(1)		31(3)	*40(4)								*40(4)	5(10)
4	Quadratic Equations							32(3)					41(4)					2(7)
5	Arithmetic Progressions	6(1)						33(3)										2(4)
6	Triangles					7(1)	23(2)					34(3)						3(6)
7	Coordinate Geometry		24(2)				25(2)											2(4)
8	Introduction to Trigonometry	8(1), 9(1)					26(2)			10(1)	27(2)							5(7)
9	Some Applications of Trigonometry											35(3)						1(3)
10	Circles					11(1),18(1)	28(2)											3(4)
11	Constructions															36(3), 37(3)		2(6)
12	Areas Related to Circles	12(1), 19(1)										38(3)						3(5)
13	Surface Areas and Volumes					13(1), 14(1)						39(3)						3(5)
14	Statistics	15(1)					29(2)		*42(4)								*42(4)	3(7)
15	Probability					16(1),20(1)												2(2)
		8(8)	1(2)			11(11)	6(12)	4(12)	*2(8)	1(1)	2(4)	4(12)	1(4)			2(6)	*2(8)	
	TOTAL		9(10)			22(39)				8	(21)				3(10)		42(80)

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks .

*Indicates any one will be tested from that chapter

NOTE: Questions on Skill

i)If Solution by Graphical method is tested then Mean will be tested.

ii) If Ogive is tested then Word Problem on Pair of Linear Equations will be tested.

This is a model Blue print. Paper setter may make changes in the objectives chapter wise.

PATTERN OF SSC FINAL EXAM QUESTION PAPER (2023-2024)

Subject : MATHEMATICS (E) - LEVEL 1 (Regular Mathematics)

Time: 2¹/₂ hrs Class: X

Max. Marks :80

General Instructions:

Read the following instructions very carefully and strictly follow them.

- i) This question paper consists of **42** questions . All questions are **compulsory**.
- ii) This question paper is divided into four Sections-**A**, **B**, **C** and **D**
- iii) In Section A, Question Nos.1 to 16 are multiple choice questions (MCQs) and Question Nos. 17 to 20 are very short answer type questions (VSA) of 1 mark each.
- iv) In Section B, Question Nos. 21 to 29 are short answer type I (SA-I) questions carrying 2 marks each.
- v) In Section C, Question Nos. 30 to 39 are short answer type II (SA-II) questions carrying **3marks** each.
- vi) In Section D, Question Nos. 40 to 42 are long answer (LA) questions carrying 4marks each.
- vii) There is no overall choice . However an internal choice has been provided in two questions of 2marks each in Section B and two questions of 3marks each in Section C.
- viii) In questions on Constructions , the drawing should be clear and exactly as per given measurements. The construction lines and arcs should also be maintained.
- ix) Graph page is provided on the answer booklet.
- x) Use of calculators and mathematical tables is not permitted.

Q	Topic	Thrust areas	Type of	Weightage
No			Question	
1	Real Numbers	Any concept from Real numbers	VSA(MCQ)	1mk
2	Polynomials	Any concept from Polynomials	VSA(MCQ)	1mk
3	Polynomials	Any concept from Polynomials	VSA(MCQ)	1mk
4	Pair of Linear Equations in Two Variables	Any concept from Pair of Linear Equations in Two Variables	VSA(MCQ)	1mk
5	Pair of Linear Equations in Two Variables	Any concept from Pair of Linear Equations in Two Variables	VSA(MCQ)	1mk
6	Arithmetic Progressions	Any concept from Arithmetic Progressions	VSA(MCQ)	1mk
7	Triangles	Any concept from Triangles	VSA(MCQ)	1mk
8	Introduction to Trigonometry	Any concept from Introduction to Trigonometry	VSA(MCQ)	lmk
9	Introduction to Trigonometry	Any concept from Introduction to Trigonometry	VSA(MCQ)	lmk
10	Introduction to Trigonometry	Any concept from Introduction to Trigonometry	VSA(MCQ)	1mk

11	Circles	Any concept from Circles	VSA(MCQ)	1mk
12	Areas Related	Any concept from Areas Related to	VSA(MCQ)	1mk
	to Circles	Circles		
13	Surface Areas and Volumes	Any question on Surface Areas	VSA(MCQ)	1mk
14	Surface Areas and Volumes	Any question on Surface areas	VSA(MCQ)	1mk
15	Statistics	Any concept from Statistics	VSA(MCQ)	1mk
16	Probability	Any concept from Probability	VSA(MCQ)	1mk
17	Pair of Linear Equations in Two Variables	 Find the value of k for which the given pair of linear equations will have a unique solution or no solution or infinitely many solutions / Find whether the given pair of linear equations are consistent or inconsistent/ Write a pair of Linear equations in two variables for the given word problem. 	VSA	1mk
18	Circles	Numerical problem	VSA	1mk
19	Areas related to Circles	 Find l(arc)/ ar(sector) (figure may be provided) (Do not substitute for π) 	VSA	1mk
20	Probability	Find the probability of the given event	VSA	1mk
		Section B	1	
21	Real Numbers	 Prove a ±√b is irrational/ Find HCF of two numbers using Euclid's division lemma/ Without performing long division method, to find whether the given rational number is terminating or nonterminating and to write its decimal expansion. 	SA-I	2 mks
22	Real Numbers	Word Problem (Application of HCF/LCM)	SA-I	2 mks
23	Triangles	Numerical application on any one of the 4 theorems on Triangles	SA-I	2 mks
24	Coordinate Geometry	 Problem based on the concept of Distance formula/ Section formula 	SA-I	2 mks
25	#Coordinate Geometry	Using the Area of a triangle formula in Co-ordinate Geometry to find • a)area of a triangle OR • b) co-ordinate k of any one vertex OR • c) area of a special parallelogram (Any two to be asked)	SA-I	2 mks

26	#Introduction	a) Given a trigonometric ratio, to find	SA-I	2 mks
	to	the value of the other trigonometric		
	Trigonometry	ratio using k method		
		OR		
		b) Evaluate trigonometric expression		
		using known trigonometric values of		
		specific angles		
27	Introduction to	To prove a trigonometric identity	SA-I	2 mks
	Trigonometry			
28	Circles	Numerical problem	SA-I	2mks
29	Statistics	• Find the mode /	SA-I	2 mks
		 median of grouped data 		
		Section C		
30	Polynomials	• Divide p(x) by g(x) and find q(x) and	SA-II	3 mks
		r(x) and write in the form		
		$p(x) = g(x) \times q(x) + r(x) /$		
		• To find $g(x)$ when $p(x)$, $q(x)$ and $r(x)$		
		are given/		
		• given two zeroes find remaining two		
		zeroes		
31	#Pair of Linear	a) Find the solution of the pair of	SA-II	3mks
	Equations in	linear equations by Elimination		
	Two Variables	method		
		OR (b) Find the solution of the nair of		
		b) Find the solution of the pair of		
		Cross multiplication method		
32	#Ouadratic	a)Find roots of the quadratic equation	SA-II	Zmks
02	Equations	by factorisation method	0/1 11	OIIIRO
	-4.4410110	OR		
		b) Find roots of the quadratic		
		equation by quadratic formula /		
		completing square method		
33	Arithmetic	Question/Word problem -Sn, a _n , d, a	SA-II	3mks
	Progressions			
34	Triangles	To prove a rider on Triangles	SA-II	3mks
	~		~	
35	Some	Word problem with figure showing	SA-II	3mks
	Applications of	• two angles of elevation/		
	Trigonometry	• two angles of depression /		
		• one angle of elevation and one		
		angle of depression.		
36	Constructions	Construct tongents to a single from	SA II	2m1-0
50		an external point	SA-11	JIIKS
37	Constructions	Construct similar triangles as per	SA-II	3mks
		given scale factor	~11 11	011110
38	Areas related	Find the area of a shaded region	SA-II	3mks
	to circles			~~
39	Surface Areas	Word problem on concept of volume	SA-II	3mks
	and Volumes			

	Section D									
40	Pair of Linear Equations in Two Variables	 Word problem / Find solution of a pair of linear equations in two variables by graphical method. 	LA	4mks						
41	Quadratic Equations	Word problem	LA	4mks						
42	Statistics	 Find mean by assumed mean method / step deviation method / Cumulative frequency curve (given 6 class intervals) 	LA	4mks						
		# Internal choice to be provided								

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION ALTO – BETIM GOA 403521

DESIGN OF SSC FINAL EXAM QUESTION PAPER (2023 – 2024)

Subject: MATHEMATICS(E)-LEVEL 2 (BASIC MATHEMATICS)

Time: 2¹/₂ Hours

CLASS : X

Max. Marks: 80

The Weightage or the distribution of marks over different dimensions of the question paper shall be as follows:

1. Weightage to the Learning Objectives

Sr. No.	Learning Objectives	Marks	Percentage of Marks
1	Knowledge	12	15 %
2	Understanding	42	52.5 %
3	Application	16	20 %
4	Skill	10	12.5 %
	Total	80	100 %

2. Weightage to the different areas of Content

Chapter No.	Торіс	Marks
1	Real Numbers	05
2	Polynomials	05
3	Pair of Linear Equations in Two Variables	10
4	Quadratic Equations	07
5	Arithmetic Progressions	04
6	Triangles	06
7	Coordinate Geometry	04
8	Introduction to Trigonometry	07
9	Some Applications of Trigonometry	03
10	Circles	04
11	Constructions	06
12	Areas Related to Circles	05
13	Surface Areas and Volumes	05
14	Statistics	07
15	Probability	02
	Total	80

Sr. No.	Types of Questions	Marks for	Number of	Total
		each question	questions	Marks
1	Very Short Answer Type (VSA)	1	20	20
2	Short Answer Type I (SA-I)	2	8	16
3	Short Answer Type II (SA-II)	3	12	36
4	Long Answer Type (LA)	4	2	08
		Total	42	80

Sr. No	Form of Questions	Approx time for each question in mins (t)	Number of questions (n)	Approx. time for each form of questions in mins (t) × (n)
1.	Very Short answer Type (VSA)	2	20	40
2.	Short Answer Type I (SA-I)	3	8	24
3.	Short Answer Type II (SA-II)	6	12	72
4.	Long Answer Type (LA)	7	2	14
	Total		42	150

4. The expected time for different type of questions would be as follows:

5. Weightage to Difficulty Level of Questions

Sr. No.	Estimated Difficulty level of Questions	Percentage
1	Easy	20 %
2	Average	60 %
3	Difficult	20 %
	Total	100 %

6. Number of Questions:

There will be **42** questions

GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION

ALTO-BETIM GOA 403521

BLUE PRINT OF SSC FINAL EXAM QUESTION PAPER (2023-2024)

Subject : MATHEMATICS (E) - LEVEL 2 (Basic Mathematics)

Time : $2\frac{1}{2}$ hrs

Class : X

Max. Marks :80

Sr	Objectives		Know	ledge		U	Inders	tandir	ng		Applica	ation			S	skill	-	
No	Forms of Questions	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	VSA	SA I	SA II	LA	
	Content/marks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	Total
1	Real Numbers	1(1)					21(2)											
							22(2)											3(5)
2	Polynomials	2(1)						29(3)										
		17(1)																3(5)
3	Pair of Linear Equations	3(1)				4(1)		30(3)									42(4)	
	in Two Variables					18(1)												5(10)
4	Quadratic Equations	5(1)						31(3)										
								32(3)										3(7)
5	Arithmetic Progressions	6(1)						33(3)										2(4)
6	Triangles							36(3)		7(1)	26(2)							3(6)
7	Coordinate Geometry		27(2)								28(2)							2(4)
8	Introduction to					8(1)	24(2)											
	Trigonometry					9(1)	25(2)											
						10(1)												5(7)
9	Some applications of											37(3)						
	Trigonometry																	1(3)
10	Circles					11(1)		38(3)										2(4)
11	Constructions															34(3)		
																35(3)		2(6)
12	Areas related to Circles	12(1)										39(3)						
		19(1)																3(5)
13	Surface Areas and	13(1)				14(1)						40(3)						
	Volumes																	3(5)
14	Statistics	15(1)					23(2)		41(4)									3(7)
15	Probability									16(1)								
										20(1)								2(2)
		10(10	1(2)			7(7)	5(10)	7(21)	1(4)	3(3)	2(4)	3(9)				2(6)	1(4)	
	Total		11(12)			20((42)			8(1	6)			3	(10)		42(80)

NOTE: Figures outside the bracket indicate the question number and figures within the bracket indicate marks.

This is a model Blue print. Paper setter may make changes in the objectives chapter wise.

PATTERN OF SSC FINAL EXAM QUESTION PAPER (2023 – 2024)

Subject : MATHEMATICS (E) - LEVEL 2 (Basic Mathematics)

Time: 21/2 Hrs

Class : X

Max. Marks: 80

General Instructions:

Read the following instructions very carefully and strictly follow them.

- (i) This question paper consists of **42** questions. All questions are **compulsory**.
- (ii) This question paper is divided into four Sections -A, B, C and D
- (iii) In Section A, Questions Nos. 1 to 16 are multiple choice questions (MCQs) and questions Nos. 17 to 20 are very short answer type questions (VSA) of 1 mark each.
- (iv) In Section B, Questions Nos. 21 to 28 are short answer type I (SA- I) questions carrying 2 marks each.
- (v) In Section C, Questions Nos. 29 to 40 are short answer type II (SA- II) questions carrying 3 marks each
- (vi) In Section D, Questions Nos. 41 and 42 are long answer (LA) questions carrying 4 marks each.
- (vii) There is no overall choice. However, an internal choice has been provided in two

Questions of 2 marks each in Section B and two questions of 3 marks each in Section C.

- (viii) In questions on constructions, the drawing should be clear and exactly as per the given measurements. The construction lines and arcs should also be maintained.
- (ix) Graph page is provided on the answer booklet.
- (x) Use of calculators and mathematical tables is not permitted.

Q.	Торіс	Thrust areas	Type of	Weightage							
No.			Question								
	Section A										
1	Real Numbers	Any concept from Real Numbers	VSA	1 mk							
			(MCQ)								
2	Polynomials	Any concept from Polynomials	VSA	1 mk							
			(MCQ)								
3	Pair of Linear Equations	Any concept from Pair of Linear	VSA	1 mk							
	in Two Variables	Equations in Two Variables	(MCQ)								
4	Pair of Linear Equations	Any concept from Pair of Linear	VSA	1 mk							
	in Two variables	Equations in Two Variables	(MCQ)								
5	Quadratic Equations	Any concept from Quadratic Equations	VSA	1 mk							
			(MCQ)								
6	Arithmetic Progressions	Any concept from Arithmetic	VSA	1 mk							
		Progression	(MCQ)								

r				
7	Triangles	Any concept from Triangles	VSA (MCO)	1 mk
8	Introduction to	Any concept from Introduction to	VSA	1 mk
	Trigonometry	Trigonometry	(MCQ)	
9	Introduction to	Any concept from Introduction to	VSA	1 mk
	Trigonometry	Trigonometry	(MCQ)	
10	Introduction to	Any concept from Introduction to	VSA	1 mk
	Trigonometry	Trigonometry	(MCQ)	
11	Circles	Any concept from Circles	VSA	1 mk
		- · ·	(MCQ)	
12	Areas Related to Circles	Any concept from Area Related to	VSA	1 mk
12		Circles	(MCQ)	4
13	Surface areas and	Any question on Surface Areas	VSA (MCO)	1 mk
1.1	Volumes	Any quastion on Surface Areas		1 male
14	Volumos	Any question on surface Areas		TUR
15	Statistics	Any concept from Statistics		1 mk
15	Statistics	Any concept nom statistics		THIK
16	Probability	Any concept from Probability		1 mk
10	1 i obdonity		(MCO)	1 1110
17	Polynomials	• Find the sum or product of zeroes/	VSA	1 mk
	- /	Write a quadratic polynomial, given		
		sum and product of zeroes/		
		• Find the zeroes of a guadratic		
		polynomial /		
		• Find dividend, given quotient,		
		remainder and divisor.		
18	Pair of Linear Equations	• Problems based on the existence of	VSA	1 mk
	in Two Variables	solutions of a pair of linear		
		equations in two variables (Table		
		3.4)/		
		• Find the value of k for which the		
		given pair of linear equations has a		
		unique solution or no solution or		
		infinitely many solutions.		
19	Areas Related to Circles	• Find length of arc of a circle/	VSA	1 mk
		area of sector of a circle		
		(figure may be provided)		
20	Duchability	(Do not substitute for π)		1
20	Probability	Find probability of given events	VSA	т шк
21	#Dool Numbers	Section B	541	2 mks
21	#Real Numbers	method to find whether the given	SAT	2 11165
		rational number is terminating or non-		
		terminating and to wite its decimal		
		expansion.		
		OR		
		b) Prove a $\pm \sqrt{b}$ is irrational.		
22	#Real numbers	a) Find HCF of two numbers using	SA I	2 mks
		Euclid's Division Algorithm.		
		OR		
		b) Find LCM of two numbers by the		
		prime factorisation method.		

23	Statistics	Find mode of grouped data.	SA I	2 mks
24	Introduction to	Given a trigonometric ratio, to find the	SA I	2 mks
	Trigonometry	value of the other trigonometric ratio		
		using k method.		
25	Introduction to	Evaluate given expression by	SA I	2 mks
	Trigonometry	substituting the known values of		
	0	trigonometric ratios.		
26	Triangles	Numerical application based on any	SA I	2 mks
_		one of the four theorems on Triangles.	-	_
27	Coordinate Geometry	Problem based on the concept of	SAT	2 mks
		Distance formula/	0,11	2
		Section formula		
28	Coordinate Geometry	Problem based on the concept of area	501	2 mks
20	Coordinate Geometry	of a triangle	341	2 11185
		Section C		
20	Polynomials	Divide a cubic polynomial $p(x)$ by a	50 11	3 mks
25	Forynonnais	linear polynomial $g(x)$ and write the	JA II	5 11185
		rosult in the form		
		$p(x) = q(x) \times q(x) \pm r(x)$		
20	#Dair of Lincar	$p(x) = q(x) \wedge g(x) + f(x)$	CA 11	2 mkc
50		linear equations by Elimination	JA II	5 111KS
	Variables	method		
	valiables			
		b) Find the colution of the pair of linear		
		ogustion by substitution method		
21	Quadratic Equations	Find roots of the guadratic equation by	C A 11	2 mks
51	Quadratic Equations	Find roots of the quadratic equation by	SAII	5 111KS
22	Quadratic Equations	Find roots of the guadratic equation by	C A 11	2 mks
52	Quadratic Equations	using quadratic formula	JA II	5 111KS
22	Arithmotic Prograssions	Given an AR to find the n th torm and	CA 11	2 mkc
- 33	Antimietic Progressions	sum of n torms	JA II	5 11185
2/	Constructions	Construct tangents to a circle from an	۲. N	2 mks
54	Constructions	ovtornal point	JA II	5 11185
25	Constructions	Construct similar triangles as per given	5A II	2 mks
33	Constructions	scale factor	JA II	5 11185
26	#Triangles	Broof of any one theorem	CA 11	2 mks
50	#Thangles		SAII	5 111KS
		• B.P.I./		
		• Pythagoras Theorem/		
		converse of Pythagoras theorem		
		(Any two to be asked)		
37	Some Applications of	Problem with figure showing	SA II	3 mks
	Irigonometry	• an angle of elevation/		
		an angle of depression		
38	Circles	 Proof of Theorem 10.2 / 	SA II	3 mks
		Numerical applications		
39	Areas Related to Circles	Find area of shaded region.	SA II	3 mks
40	Surface Areas and	Word problem on concept of volume of	SA II	3 mks
	Volumes	combination of two solids.		

Section D							
41	Statistics	Find Mean by Direct method. (Given six	LA	4 mks			
		class intervals)					
42	Pair of Linear Equations	Find solution of a pair of linear	LA	4 mks			
in Two Variables		equations in two variables by graphical					
		method.					
	# - Internal choice to be provided						